Running mechanical alterations during repeated treadmill sprints in hot versus hypoxic environments. A pilot study.
نویسندگان
چکیده
We determined if performance and mechanical running alterations during repeated treadmill sprinting differ between severely hot and hypoxic environments. Six male recreational sportsmen (team- and racket-sport background) performed five 5-s sprints with 25-s recovery on an instrumented treadmill, allowing the continuous (step-by-step) measurement of running kinetics/kinematics and spring-mass characteristics. These were randomly conducted in control (CON; 25°C/45% RH, inspired fraction of oxygen = 20.9%), hot (HOT; 38°C/21% RH, inspired fraction of oxygen = 20.9%; end-exercise core temperature: ~38.6°C) and normobaric hypoxic (HYP, 25°C/45% RH, inspired fraction of oxygen = 13.3%/simulated altitude of ~3600 m; end-exercise pulse oxygen saturation: ~84%) environments. Running distance was lower (P < 0.05) in HOT compared to CON and HYP for the first sprint but larger (P < 0.05) sprint decrement score occurred in HYP versus HOT and CON. Compared to CON, the cumulated distance covered over the five sprints was lower (P < 0.01) in HYP but not in HOT. Irrespective of the environmental condition, significant changes occurred from the first to the fifth sprint repetitions (all three conditions compounded) in selected running kinetics (mean horizontal forces, P < 0.01) or kinematics (contact and swing times, both P < 0.001; step frequency, P < 0.001) and spring-mass characteristics (vertical stiffness, P < 0.001; leg stiffness, P < 0.01). No significant interaction between sprint number and condition was found for any mechanical data. Preliminary evidence indicates that repeated-sprint ability is more impaired in hypoxia than in a hot environment, when compared to a control condition. However, as sprints are repeated, mechanical alterations appear not to be exacerbated in severe (heat, hypoxia) environmental conditions.
منابع مشابه
Neuro-mechanical determinants of repeated treadmill sprints - Usefulness of an “hypoxic to normoxic recovery” approach
To improve our understanding of the limiting factors during repeated sprinting, we manipulated hypoxia severity during an initial set and examined the effects on performance and associated neuro-mechanical alterations during a subsequent set performed in normoxia. On separate days, 13 active males performed eight 5-s sprints (recovery = 25 s) on an instrumented treadmill in either normoxia near...
متن کاملMechanical Alterations Associated with Repeated Treadmill Sprinting under Heat Stress
PURPOSE Examine the mechanical alterations associated with repeated treadmill sprinting performed in HOT (38°C) and CON (25°C) conditions. METHODS Eleven recreationally active males performed a 30-min warm-up followed by three sets of five 5-s sprints with 25-s recovery and 3-min between sets in each environment. Constant-velocity running for 1-min at 10 and 20 km.h-1 was also performed prior...
متن کاملA Clustered Repeated-Sprint Running Protocol for Team-Sport Athletes Performed in Normobaric Hypoxia.
The present study compared the performance (peak speed, distance, and acceleration) of ten amateur team-sport athletes during a clustered (i.e., multiple sets) repeated-sprint protocol, (4 sets of 4, 4-s running sprints; i.e., RSR444) in normobaric normoxia (FiO2 = 0.209; i.e., RSN) with normobaric hypoxia (FiO2 = 0.140; i.e., RSH). Subjects completed two separate trials (i. RSN, ii. RSH; rando...
متن کاملEffect of fatigue on force production and force application technique during repeated sprints.
We investigated the changes in the technical ability of force application/orientation against the ground vs. the physical capability of total force production after a multiple-set repeated sprints series. Twelve male physical education students familiar with sprint running performed four sets of five 6-s sprints (24s of passive rest between sprints, 3min between sets). Sprints were performed fr...
متن کاملHigh-speed running performance is largely unaffected by hypoxic reductions in aerobic power.
We tested the importance of aerobic metabolism to human running speed directly by altering inspired oxygen concentrations and comparing the maximal speeds attained at different rates of oxygen uptake. Under both normoxic (20.93% O2) and hypoxic (13.00% O2) conditions, four fit adult men completed 15 all-out sprints lasting from 15 to 180 s as well as progressive, discontinuous treadmill tests t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of sports sciences
دوره 34 12 شماره
صفحات -
تاریخ انتشار 2016